

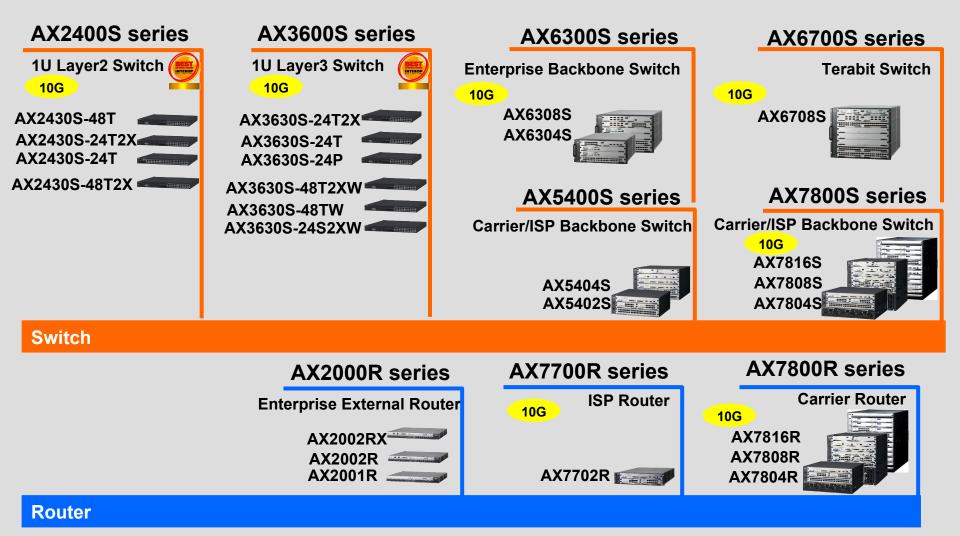
Operational Issues in IPv6 from vendors' point of view

鈴木 伸介 SUZUKI, Shinsuke < suz@alaxala.net>

ALAXALA Networks Corporation

- 1. Introduction
 - Introduction of ALAXALA
 - Dual Stack for the "Guaranteed Network"
- 2. IPv6-Specific Issues in Network Equipment
- IPv6 Operational Issues in a Dual-stack Network System

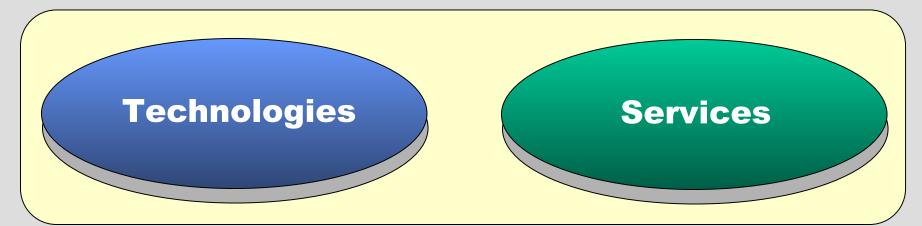
Who is ALAXALA?



ALAXALA Product Line-up

AlaxalA

All of them support wire-rate IPv6 forwarding/filtering/QoS



ALAXALA's Philosophy

[Guaranteed Network]

- Contribute to the establishment of a society rich in information and telecommunications.
- Provide user-friendly and security-conscious networks for the customers all over the world.
- Highly Reliable, Stable, and Secure Guaranteed Networks in IP/Ethernet Environments.

IPv6 influence to the Guaranteed Network AlaxalA

IPv6 Forwarding speed

Small number of electronic components

Ecology

(Energy Saving)

Easy Operation and

Maintenance

High Performance

and

Port-Density

Guaranteed Network Technologies (Product Quality) Protocol Stability & Redundancy Reliability

and Availability

> Quality of Service

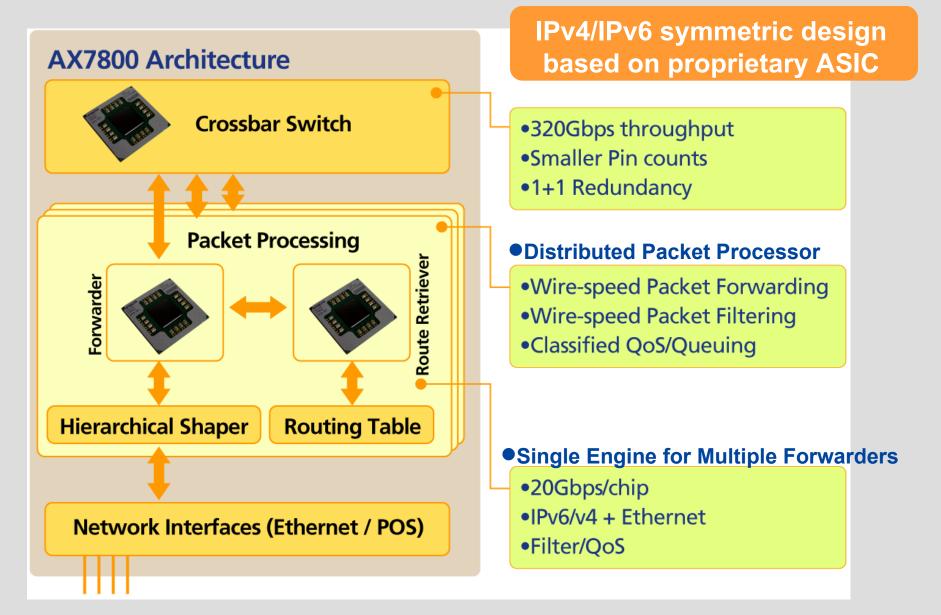
Network Security

IPv6-aware ACL

To provide the Guaranteed IPv6 Network... AlaxalA

- IPv6 Forwarding Speed
 - Wire-rate packet forwarding over 10G-Ethernet
 - Very short latency : about 10 µ sec
 - IPv6-aware ACL & QoS without performance degradation
 - Layer 2: MAC address, protocol, VLAN-ID (IEEE802.1q), User priority (IEEE802.1p)
 - Layer 3: Address, Protocol, Traffic class, ...
 - Layer 4: TCP/UDP port number, TCP flags, ICMP(v6) type/code
 - Even in L2 forwarding, ACL and QoS can work based on L2, L3 & L4 rules
- Protocol Stability & Redundancy
 - IPv6 Protocol Line-up congruent to IPv4
 - routing protocol (rip, ospf, bgp, isis, pim ...)
 - management protocol (telnet, ftp, ssh, snmp, …)
 - redundancy protocol (vrrp)
 - Stable IPv6 implementation based on KAME
- Small number of electronic components
 - (will be discussed later)

\...



01-000280,01-000307

Treat IPv6 equally to IPv4 to provide a true dual-stack

Example. AX7800 Architecture

AlaxalA

Introduction

IPv6-specific Issues in Network Equipment
 Benefit of IPv6 from vendors' point of view
 Hardware Issues

 Number of FIB entries
 Filtering Capabilities
 Tunnel I/F

 Software Issues

 Link-local address handling

IPv6 Operational Issues in a Dual-stack Network System

Benefit of IPv6 from vendors' point of view AlaxalA

No NAT

Makes an implementation simpler

- Smaller number of routing entries
 - Although IPv6 address is 4times larger than IPv4, the aggregation efficiency still wins.
- Simpler automatic address allocation
 - DHCPv4(src=0.0.0.0,dst=255.255.255.255) has to be treated specially
 - No special treatment is required in IPv6, thanks to link-local address.
- Free from a solution to cope with address confliction
 - Private Address → Unique Local Address
 - Multicast Address \rightarrow Unicast-Prefix-based Multicast Address

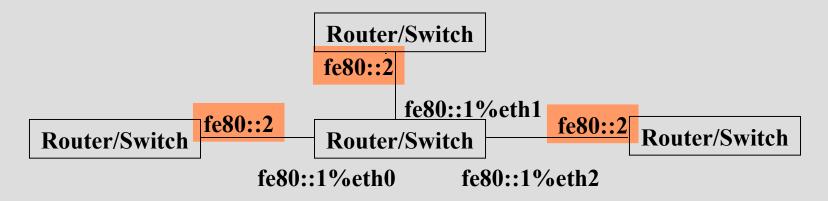
4bit	28	3bit				
1110	Group-ID			About 85% of the Group-ID is reserved by IANA		
16bit		8bit	8bit	64bit	32bit	
FF WS		00	YY	Subnet Prefix	Group-ID	
W:flag, S: scope, YY: prefix length Only 25% of the Group-ID is reserved by IANA.						

- FIB = Forwarding Information Base
 - Information necessary to forward an incoming packet
 - FIB-search speed determines packet-forwarding speed
 - CAM (Contents-Addressable Memory) is adopted to store a FIB


2001:db8:1:2:3:9:8:9 2001:db8:1::/48 fe80::1 eth00 2001:db8:2::/48 fe80::2 eth01 ...

- CAM has too week points = cost & energy consumption
 - It is important to estimate the number of FIB entries.
 - but it is quite difficult to guess...
 - Created a mode to control the amount of CAM entries for IPv4 and IPv6 (and other features)

- What kind of information can be a filtering condition without a degradation of packet forwarding speed?
 - Address
 - Protocol Type
 - Port Number
 - Packet Length
 - Dynamic Filtering Condition
 - e.g. uRPF (Unicast Reverse Path Forwarding)
- Normally depends on the FIB design.
 - Difficult to append IPv6 to the legacy (=IPv4-only hardware) implem entation.



Tunnel I/F is often required in the transition phase to bypass non-IPv6-ready routers

- But there are several problems in tunnel operation:
 - Difficult to guarantee a network quality/speed
 - Difficult to manage the link-connectivity
 - People may misunderstand "IPv6 protocol is slower than IPv4".
- Well suited for a temporarily use, but not for a production use.
 - Is it really worth providing a wire-rate tunnel I/F (with a huge amount of investment)?

- Link-local address
 - An IP address which is unique only within a link
 - There may be the same link-local address in different links.
 - Normally link information is followed by a link-local address

Expected Problems

- Lack of space to insert link information
 - Protocol, User Interface, ...
- Vague Notation "fe80::1%ethernet0/10"
 - IPv6 address fe80::1 at interface ethernet0 with prefix-length 10
 - IPv6 address fe80::1 at interface ethernet0/10

1. Introduction

- 2. IPv6-specific Issues in Network Equipment
- 3. IPv6 Operational Issues in a Dual-Stack Network System
 - Philosophical Issues
 - Operational Issues

Philosophical Issues in Dual-stack Networks AlaxalA

- Should IPv6 network be completely equivalent to IPv4's one?
 - If so, what is the benefit of IPv6 compare to IPv4?
 - If not so, you should provide two different policies for the same network.
 - lead to an increase of operation cost
- Considering the above, the easiest way is
 - use IPv6 for a new service
 - use IPv4 for a legacy service

Operational Issues in Dual-stack Networks AlaxaIA

Each equipment can be dual-stack, but the whole network system cannot always be.

Layer3 Routers/Switches without IPv6

Avoidable by a redesign or a renewal Different topology between IPv6 and IPv4, which can increase the operational cost

Layer3 Routers/Switches with IPv6 (but by software)

➤ People hates IPv6 because it is slower than IPv4 ☺

Not so serious unless multicast Layer2 Switches without IPv6 streaming is used > Lack of <u>MLD snooping</u> makes it difficult to deploy IPv6 multicast

Management Servers

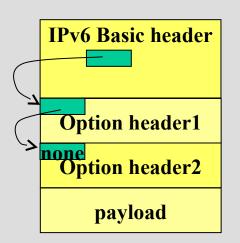
Difficult to be handled...

- be ➤ There are several commercial <u>IDS</u>'s and <u>IPS</u>'s, but most of them are not IPv6-ready yet.
 - Even when network equipment supports sFlow or NetFlow for IP v6, <u>flow-collectors</u> cannot handle IPv6 traffic.

- To guarantee network service in IPv6 as well as in IPv4, network equipment MUST
 - Completely treat IPv6 in the same manner as in IPv4

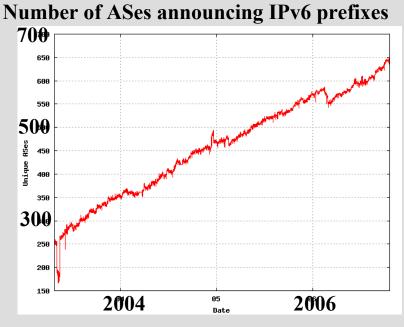
Protocol, ACL, User-Interface, …

- Equipment MUST be designed taking IPv6 into consideration from the beginning
- Huge amount of IPv6 address space contributes to a simpler implementation of network equipment
 - No need for NAT, Better Aggregation, No address confliction, …
- Even when a network equipment is IPv6-ready, the whole network may be non-IPv6-ready due to a lack of helpful management services.
 - Flow collector
 - IDS/IPS


AlaxalA

Thank you !

http://www.alaxala.com/


One of the benefit of IPv6 is supposed to be "Improved Sup port for Extensions and Options".

Changes in the way IP header options are encoded allows for <u>more efficient</u> <u>forwarding</u>, less stringent limits on the length of options, and greater flexibility for introducing new options in the future. (RFC2460 "Internet Protocol, Version 6 Specification)

- But it does not contribute to an efficient forwarding from the hardware implementer's point of view.
 - parallel processing is difficult, because of a uncertain number of ch ain-header look-ups (i.e. uncertain time for packet forwarding)
 - It was a myth in the ATM-era (before the birth of IP-forwarding-ASI C)

c.f.) Related Statistics

Number of ASes announcing IPv4 prefixes

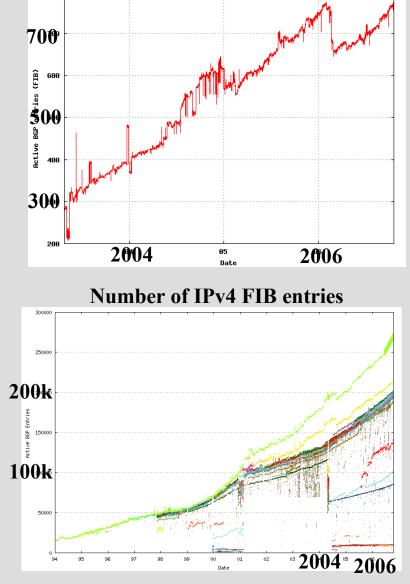
02

03

2500

20k

tunog 1500 양


10k

500

lited from http://www.potaroo.net/

AlaxalA

All Rights Reserved, Copyright(c), 2006, ALAXALA Networks, Corp.

05

2004

2006

- Normally, link-local address is automatically generated from MAC addres s
- However, the automatic generation is not always appropriate for routers/ switches, because
 - Change of interface card leads to an unnecessary change of link-local addres s
 - Protocol behavior sometimes changes depending on the IPv6 address itself.
 So a protocol behavior might change between IPv4 and IPv6.
 - e.g.)
 - PIM Designated Router in a link = a router with the largest IPv4 address/IPv6 link-local address in the link
 - MLD Querier in a link = a router with the smallest IPv4 address/IPv6 link-local address in the link
 - Operators have difficulty in the management of routing table.
- Proposal = IPv4-address embedded link-local address
 - IPv4:192.168.1.4 \rightarrow IPv6 link-local fe80::192:168:1:4

- A Windows-XP PC may become an IPv6 router when it has multiple interfaces and a global IPv4 address on one of the interfaces.
 - Normally by mistake
 - But attackers can make use of this feature for wire-tapping, spoofing,
 ...
 - (This is not an IPv6-specific attack; using a bogus DHCPv4 server, you can do the same thing)
- Several measures can be taken in network equipment
 - Router Preference
 - RA packet filtering by Layer2 switches
 - Private-VLAN